| 1.Metal hydride   nanoparticles with ultrahigh structural stability and hydrogen storage     activity derived from microencapsulated nanoconfinement. Advanced     Materials, 2017, 29: 1700760  | 
        
         | 2.State of the art   multi-strategy improvement of Mg-based hydrides for hydrogen storage.     Journal of Alloys and Compounds, 2019, 782: 796-823. (Invited Review) | 
        
         | 3. Remarkable   synergistic catalysis of Ni-doped ultrafine TiO2 on hydrogen Sorption     kinetics of MgH2. ACS Applied Materials & Interfaces, 2018, 10(30):     24975-24980. | 
        
         | 4. Facile synthesis of   carbon supported nano-Ni particles with superior catalytic effect on     hydrogen storage kinetics of MgH2. ACS Applied Energy Materials, 2018, 1:     1158-1165. | 
        
         | 5. Superior hydrogenation   properties in a Mg65Ce10Ni20Cu5 nanoglass processed by melt-spinning     followed by high-pressure torsion. Scripta Materialia, 2018, 152: 137-140. | 
        
         | 6. Hydrogenation   properties of five-component Mg60Ce10Ni20Cu5X5 (X = Co, Zn) metallic     glasses. Intermetallics, 2019, 108: 94-99. | 
        
         | 7. Nickel-decorated   graphene nanoplates for enhanced H2 sorption properties of magnesium     hydride at moderate temperatures. Journal of Materials Chemistry A, 2016,     4(7): 2560-2570. | 
        
         | 8. Effect of multi-wall   carbon nanotubes supported nano-nickel and TiF3 addition on hydrogen     storage properties of magnesium hydride. Journal of Alloys and Compounds,     2016, 669: 8-18. | 
        
         | 9. Excellent catalytic   effects of multi-walled carbon nanotube supported titania on hydrogen     storage of a Mg-Ni alloy. Chemical Communications, 2015, 51(12): 2368-2371. | 
        
         | 10. Significantly    improved electrochemical hydrogen storage properties of magnesium nickel     hydride modified with nano-nickel. Journal of Power Sources, 2015, 280:     132-140. | 
        
         | 11. Remarkable    hydrogen storage properties at low temperature of Mg-Ni composites prepared     by hydriding combustion synthesis and mechanical milling. RSC Advances,     2015, 5(78): 63202-63208. | 
        
         | 12. Effect of multi-wall     carbon nanotubes supported palladium addition on hydrogen storage     properties of magnesium hydride. International Journal of Hydrogen Energy,     2014, 39(19): 10184-10194. | 
        
         | 13. Highly efficient    bimetal synergetic catalysis by a multi-wall carbon nanotube supported     palladium and nickel catalyst for the hydrogen storage of magnesium     hydride. Chemical Communications, 2014, 50(50): 6641-6644. | 
        
         | 14. Synergistic hydrogen    desorption of HCS MgH2 + LiAlH4 composite. Energy, 2013, 55: 933-938. | 
        
         | 15.Efficient catalysis   by MgCl2 in hydrogen generation via hydrolysis of Mg-based hydride prepared     by hydriding combustion synthesis. Chemical Communications, 2012, 48(44):     5509-5511. |